Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Pharmacol Ther ; 115(3): 606-615, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38071462

RESUMO

Autotaxin (ATX) contributes to the production of lysophosphatidic acid (LPA), which is associated with fibrosis development in idiopathic pulmonary fibrosis (IPF). The ATX inhibitor ziritaxestat failed to reduce decline in forced vital capacity (FVC) in patients with IPF in ISABELA 1 and 2 (NCT03711162 and NCT03733444), two identically designed phase III studies. In the current analysis, we evaluated pharmacokinetic and pharmacodynamic data from the pooled ISABELA studies to determine whether the lack of efficacy could be attributed to insufficient exposure and/or target engagement. Nonlinear mixed effect modeling was performed to predict ziritaxestat exposure in individual patients and describe its effect on LPA C18:2 levels. We assessed whether there was a correlation between ziritaxestat and ATX concentration and evaluated the relationship between LPA C18:2 reduction and change from baseline in FVC. Ziritaxestat exposure in patients with IPF was numerically lower in those who received ziritaxestat on top of pirfenidone than in those who received ziritaxestat on top of nintedanib or ziritaxestat alone. In most patients, LPA C18:2 reduction was comparable to that reported in healthy volunteers. ATX concentrations increased over time and correlated weakly with ziritaxestat exposure and LPA C18:2 reduction. No correlation between reduction in LPA C18:2 and change from baseline in FVC was apparent. Based on these evaluations, exposure and target engagement are not thought to have contributed to the lack of efficacy observed. We hypothesize that the lack of efficacy of ziritaxestat in the ISABELA program, despite adequate LPA reduction, could be due to the involvement of an alternative pro-fibrotic pathway.


Assuntos
Fibrose Pulmonar Idiopática , Humanos , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/induzido quimicamente , Imidazóis/farmacocinética , Pirimidinas/farmacocinética , Fibrose
2.
JAMA ; 329(18): 1567-1578, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37159034

RESUMO

Importance: There is a major need for effective, well-tolerated treatments for idiopathic pulmonary fibrosis (IPF). Objective: To assess the efficacy and safety of the autotaxin inhibitor ziritaxestat in patients with IPF. Design, Setting, and Participants: The 2 identically designed, phase 3, randomized clinical trials, ISABELA 1 and ISABELA 2, were conducted in Africa, Asia-Pacific region, Europe, Latin America, the Middle East, and North America (26 countries). A total of 1306 patients with IPF were randomized (525 patients at 106 sites in ISABELA 1 and 781 patients at 121 sites in ISABELA 2). Enrollment began in November 2018 in both trials and follow-up was completed early due to study termination on April 12, 2021, for ISABELA 1 and on March 30, 2021, for ISABELA 2. Interventions: Patients were randomized 1:1:1 to receive 600 mg of oral ziritaxestat, 200 mg of ziritaxestat, or placebo once daily in addition to local standard of care (pirfenidone, nintedanib, or neither) for at least 52 weeks. Main Outcomes and Measures: The primary outcome was the annual rate of decline for forced vital capacity (FVC) at week 52. The key secondary outcomes were disease progression, time to first respiratory-related hospitalization, and change from baseline in St George's Respiratory Questionnaire total score (range, 0 to 100; higher scores indicate poorer health-related quality of life). Results: At the time of study termination, 525 patients were randomized in ISABELA 1 and 781 patients in ISABELA 2 (mean age: 70.0 [SD, 7.2] years in ISABELA 1 and 69.8 [SD, 7.1] years in ISABELA 2; male: 82.4% and 81.2%, respectively). The trials were terminated early after an independent data and safety monitoring committee concluded that the benefit to risk profile of ziritaxestat no longer supported their continuation. Ziritaxestat did not improve the annual rate of FVC decline vs placebo in either study. In ISABELA 1, the least-squares mean annual rate of FVC decline was -124.6 mL (95% CI, -178.0 to -71.2 mL) with 600 mg of ziritaxestat vs -147.3 mL (95% CI, -199.8 to -94.7 mL) with placebo (between-group difference, 22.7 mL [95% CI, -52.3 to 97.6 mL]), and -173.9 mL (95% CI, -225.7 to -122.2 mL) with 200 mg of ziritaxestat (between-group difference vs placebo, -26.7 mL [95% CI, -100.5 to 47.1 mL]). In ISABELA 2, the least-squares mean annual rate of FVC decline was -173.8 mL (95% CI, -209.2 to -138.4 mL) with 600 mg of ziritaxestat vs -176.6 mL (95% CI, -211.4 to -141.8 mL) with placebo (between-group difference, 2.8 mL [95% CI, -46.9 to 52.4 mL]) and -174.9 mL (95% CI, -209.5 to -140.2 mL) with 200 mg of ziritaxestat (between-group difference vs placebo, 1.7 mL [95% CI, -47.4 to 50.8 mL]). There was no benefit with ziritaxestat vs placebo for the key secondary outcomes. In ISABELA 1, all-cause mortality was 8.0% with 600 mg of ziritaxestat, 4.6% with 200 mg of ziritaxestat, and 6.3% with placebo; in ISABELA 2, it was 9.3% with 600 mg of ziritaxestat, 8.5% with 200 mg of ziritaxestat, and 4.7% with placebo. Conclusions and Relevance: Ziritaxestat did not improve clinical outcomes compared with placebo in patients with IPF receiving standard of care treatment with pirfenidone or nintedanib or in those not receiving standard of care treatment. Trial Registration: ClinicalTrials.gov Identifiers: NCT03711162 and NCT03733444.


Assuntos
Fibrose Pulmonar Idiopática , Medicamentos para o Sistema Respiratório , Idoso , Humanos , Masculino , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/fisiopatologia , Pulmão/efeitos dos fármacos , Pulmão/fisiopatologia , Qualidade de Vida , Ensaios Clínicos Controlados Aleatórios como Assunto , Fenômenos Fisiológicos Respiratórios/efeitos dos fármacos , Resultado do Tratamento , Ensaios Clínicos Fase III como Assunto , Estudos Multicêntricos como Assunto , Administração Oral , Pessoa de Meia-Idade , Feminino , Inibidores de Fosfodiesterase/farmacologia , Inibidores de Fosfodiesterase/uso terapêutico , Medicamentos para o Sistema Respiratório/farmacologia , Medicamentos para o Sistema Respiratório/uso terapêutico
3.
Arthritis Rheumatol ; 75(8): 1434-1444, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36787101

RESUMO

OBJECTIVE: We undertook this study to explore the efficacy, safety, and tolerability of ziritaxestat, a selective autotaxin inhibitor, in patients with early diffuse cutaneous systemic sclerosis (dcSSc). METHODS: NOVESA was a 24-week, multicenter, phase IIa, double-blind, placebo-controlled study. Adults with dcSSc were randomized to oral ziritaxestat 600 mg once daily or matching placebo. The primary efficacy end point was change from baseline in modified Rodnan skin score (MRSS) at week 24. Secondary end points assessed safety and tolerability; other end points included assessment of skin and blood biomarkers. Patients in NOVESA could enter a 104-week open-label extension (OLE). RESULTS: Patients were randomized to ziritaxestat (n = 21) or placebo (n = 12). Reduction in MRSS was significantly greater in the ziritaxestat group versus the placebo group (-8.9 versus -6.0 units, respectively; P = 0.0411). Placebo patients switching to ziritaxestat in the OLE showed similar reductions in MRSS to those observed for ziritaxestat patients in the parent study. Ziritaxestat was well tolerated; the most frequent treatment-related treatment-emergent adverse events were headache and diarrhea. Circulating lysophosphatidic acid (LPA) C18:2 was significantly reduced, demonstrating ziritaxestat target engagement, and levels of fibrosis biomarkers were reduced in the blood. No differentially expressed genes were identified in skin biopsies. Significant changes in 109 genes were identified in blood samples. CONCLUSION: Ziritaxestat resulted in significantly greater reduction in MRSS at week 24 than placebo; no new safety signals emerged. Biomarker analysis suggests ziritaxestat may reduce fibrosis. Modulation of the autotaxin/LPA pathway could improve skin involvement in patients with dcSSc. A plain language summary is provided in the Supplementary Material, available on the Arthritis & Rheumatology website at https://onlinelibrary.wiley.com/doi/10.1002/art.42477.


Assuntos
Esclerodermia Difusa , Adulto , Humanos , Esclerodermia Difusa/patologia , Resultado do Tratamento , Pele/patologia , Biópsia , Método Duplo-Cego , Fibrose
4.
Artigo em Inglês | MEDLINE | ID: mdl-30430109

RESUMO

The relevance for in vitro three-dimensional (3D) tissue culture of skin has been present for almost a century. From using skin biopsies in organ culture, to vascularized organotypic full-thickness reconstructed human skin equivalents, in vitro tissue regeneration of 3D skin has reached a golden era. However, the reconstruction of 3D skin still has room to grow and develop. The need for reproducible methodology, physiological structures and tissue architecture, and perfusable vasculature are only recently becoming a reality, though the addition of more complex structures such as glands and tactile corpuscles require advanced technologies. In this review, we will discuss the current methodology for biofabrication of 3D skin models and highlight the advantages and disadvantages of the existing systems as well as emphasize how new techniques can aid in the production of a truly physiologically relevant skin construct for preclinical innovation.

5.
J Immunol ; 201(8): 2377-2384, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30158125

RESUMO

Studies comparing endogenous and recombinant serum amyloid A (SAA) have generated conflicting data on the proinflammatory function of these proteins. In exploring this discrepancy, we found that in contrast to commercially sourced recombinant human SAA1 (hSAA1) proteins produced in Escherichia coli, hSAA1 produced from eukaryotic cells did not promote proinflammatory cytokine production from human or mouse cells, induce Th17 differentiation, or stimulate TLR2. Proteomic analysis of E. coli-derived hSAA1 revealed the presence of numerous bacterial proteins, with several being reported or probable lipoproteins. Treatment of hSAA1 with lipoprotein lipase or addition of a lipopeptide to eukaryotic cell-derived hSAA1 inhibited or induced the production of TNF-α from macrophages, respectively. Our results suggest that a function of SAA is in the binding of TLR2-stimulating bacterial proteins, including lipoproteins, and demand that future studies of SAA employ a recombinant protein derived from eukaryotic cells.


Assuntos
Leucócitos Mononucleares/imunologia , Proteína Amiloide A Sérica/imunologia , Células Th17/imunologia , Receptor 2 Toll-Like/agonistas , Adulto , Animais , Diferenciação Celular , Citocinas/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/imunologia , Células HEK293 , Humanos , Mediadores da Inflamação/metabolismo , Lipoproteínas/imunologia , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Recombinantes/genética , Proteína Amiloide A Sérica/genética
6.
J Allergy Clin Immunol ; 142(2): 435-450.e10, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29108965

RESUMO

BACKGROUND: Emerging studies suggest that enhanced glycolysis accompanies inflammatory responses. Virtually nothing is known about the relevance of glycolysis in patients with allergic asthma. OBJECTIVES: We sought to determine whether glycolysis is altered in patients with allergic asthma and to address its importance in the pathogenesis of allergic asthma. METHODS: We examined alterations in glycolysis in sputum samples from asthmatic patients and primary human nasal cells and used murine models of allergic asthma, as well as primary mouse tracheal epithelial cells, to evaluate the relevance of glycolysis. RESULTS: In a murine model of allergic asthma, glycolysis was induced in the lungs in an IL-1-dependent manner. Furthermore, administration of IL-1ß into the airways stimulated lactate production and expression of glycolytic enzymes, with notable expression of lactate dehydrogenase A occurring in the airway epithelium. Indeed, exposure of mouse tracheal epithelial cells to IL-1ß or IL-1α resulted in increased glycolytic flux, glucose use, expression of glycolysis genes, and lactate production. Enhanced glycolysis was required for IL-1ß- or IL-1α-mediated proinflammatory responses and the stimulatory effects of IL-1ß on house dust mite (HDM)-induced release of thymic stromal lymphopoietin and GM-CSF from tracheal epithelial cells. Inhibitor of κB kinase ε was downstream of HDM or IL-1ß and required for HDM-induced glycolysis and pathogenesis of allergic airways disease. Small interfering RNA ablation of lactate dehydrogenase A attenuated HDM-induced increases in lactate levels and attenuated HDM-induced disease. Primary nasal epithelial cells from asthmatic patients intrinsically produced more lactate compared with cells from healthy subjects. Lactate content was significantly higher in sputum supernatants from asthmatic patients, notably those with greater than 61% neutrophils. A positive correlation was observed between sputum lactate and IL-1ß levels, and lactate content correlated negatively with lung function. CONCLUSIONS: Collectively, these findings demonstrate that IL-1ß/inhibitory κB kinase ε signaling plays an important role in HDM-induced glycolysis and pathogenesis of allergic airways disease.


Assuntos
Asma/metabolismo , Hipersensibilidade/metabolismo , Interleucina-1beta/metabolismo , Pulmão/metabolismo , Nariz/patologia , Mucosa Respiratória/metabolismo , Escarro/metabolismo , Animais , Antígenos de Dermatophagoides/imunologia , Células Cultivadas , Estudos de Coortes , Modelos Animais de Doenças , Feminino , Glicólise , Humanos , Proteínas I-kappa B/metabolismo , Interleucina-1beta/genética , Ácido Láctico/metabolismo , Pulmão/patologia , Masculino , Camundongos , Pessoa de Meia-Idade , Neutrófilos/patologia , Proteínas Proto-Oncogênicas/metabolismo , Pyroglyphidae , RNA Interferente Pequeno/genética , Mucosa Respiratória/patologia , Transdução de Sinais
7.
Redox Biol ; 12: 883-896, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28463821

RESUMO

Alcohol use disorders are common both in the United States and globally, and are associated with a variety of co-morbid, inflammation-linked diseases. The pathogenesis of many of these ailments are driven by the activation of the NLRP3 inflammasome, a multi-protein intracellular pattern recognition receptor complex that facilitates the cleavage and secretion of the pro-inflammatory cytokines IL-1ß and IL-18. We hypothesized that protracted exposure of leukocytes to ethanol would amplify inflammasome activation, which would help to implicate mechanisms involved in diseases associated with both alcoholism and aberrant NLRP3 inflammasome activation. Here we show that long-term ethanol exposure of human peripheral blood mononuclear cells and a mouse macrophage cell line (J774) amplifies IL-1ß secretion following stimulation with NLRP3 agonists, but not with AIM2 or NLRP1b agonists. The augmented NRLP3 activation was mediated by increases in iNOS expression and NO production, in conjunction with increases in mitochondrial membrane depolarization, oxygen consumption rate, and ROS generation in J774 cells chronically exposed to ethanol (CE cells), effects that could be inhibited by the iNOS inhibitor SEITU, the NO scavenger carboxy-PTIO, and the mitochondrial ROS scavenger MitoQ. Chronic ethanol exposure did not alter K+ efflux or Zn2+ homeostasis in CE cells, although it did result in a lower intracellular concentration of NAD+. Prolonged administration of acetaldehyde, the product of alcohol dehydrogenase (ADH) mediated metabolism of ethanol, mimicked chronic ethanol exposure, whereas ADH inhibition prevented ethanol-induced IL-1ß hypersecretion. Together, these results indicate that increases in iNOS and mitochondrial ROS production are critical for chronic ethanol-induced IL-1ß hypersecretion, and that protracted exposure to the products of ethanol metabolism are probable mediators of NLRP3 inflammasome hyperactivation.


Assuntos
Etanol/farmacologia , Interleucina-1beta/metabolismo , Mitocôndrias/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Linhagem Celular , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Inflamassomos/metabolismo , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Camundongos , Mitocôndrias/metabolismo
8.
J Immunol ; 197(5): 1720-32, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27465529

RESUMO

Nitrogen dioxide (NO2) is an environmental air pollutant and endogenously generated oxidant that contributes to the exacerbation of respiratory disease and can function as an adjuvant to allergically sensitize to an innocuous inhaled Ag. Because uric acid has been implicated as a mediator of adjuvant activity, we sought to determine whether uric acid was elevated and participated in a mouse model of NO2-promoted allergic sensitization. We found that uric acid was increased in the airways of mice exposed to NO2 and that administration of uricase inhibited the development of OVA-driven allergic airway disease subsequent to OVA challenge, as well as the generation of OVA-specific Abs. However, uricase was itself immunogenic, inducing a uricase-specific adaptive immune response that occurred even when the enzymatic activity of uricase had been inactivated. Inhibition of the OVA-specific response was not due to the capacity of uricase to inhibit the early steps of OVA uptake or processing and presentation by dendritic cells, but occurred at a later step that blocked OVA-specific CD4(+) T cell proliferation and cytokine production. Although blocking uric acid formation by allopurinol did not affect outcomes, administration of ultra-clean human serum albumin at protein concentrations equivalent to that of uricase inhibited NO2-promoted allergic airway disease. These results indicate that, although uric acid levels are elevated in the airways of NO2-exposed mice, the powerful inhibitory effect of uricase administration on allergic sensitization is mediated more through Ag-specific immune deviation than via suppression of allergic sensitization, a mechanism to be considered in the interpretation of results from other experimental systems.


Assuntos
Asma/prevenção & controle , Hipersensibilidade/imunologia , Dióxido de Nitrogênio/toxicidade , Ovalbumina/imunologia , Urato Oxidase/administração & dosagem , Ácido Úrico/metabolismo , Imunidade Adaptativa , Alérgenos/administração & dosagem , Alopurinol/administração & dosagem , Animais , Apresentação de Antígeno , Asma/induzido quimicamente , Asma/imunologia , Citocinas/biossíntese , Citocinas/imunologia , Modelos Animais de Doenças , Humanos , Pulmão/química , Pulmão/imunologia , Pulmão/patologia , Camundongos , Camundongos Endogâmicos BALB C , Ovalbumina/administração & dosagem , Albumina Sérica/administração & dosagem , Células Th2 , Urato Oxidase/metabolismo
9.
J Immunol ; 197(4): 1322-34, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27421477

RESUMO

Immunosuppression is a major complication of alcoholism that contributes to increased rates of opportunistic infections and sepsis in alcoholics. The NLRP3 inflammasome, a multiprotein intracellular pattern recognition receptor complex that facilitates the cleavage and secretion of the proinflammatory cytokines IL-1ß and IL-18, can be inhibited by ethanol, and we sought to better understand the mechanism through which this occurs and whether chemically similar molecules exert comparable effects. We show that ethanol can specifically inhibit activation of the NLRP3 inflammasome, resulting in attenuated IL-1ß and caspase-1 cleavage and secretion, as well as diminished apoptosis-associated speck-like protein containing a CARD (ASC) speck formation, without affecting potassium efflux, in a mouse macrophage cell line (J774), mouse bone marrow-derived dendritic cells, mouse neutrophils, and human PBMCs. The inhibitory effects on the Nlrp3 inflammasome were independent of γ-aminobutyric acid A receptor activation or N-methyl-d-asparate receptor inhibition but were associated with decreased oxidant production. Ethanol treatment markedly decreased cellular tyrosine phosphorylation, whereas administration of the tyrosine phosphatase inhibitor sodium orthovanadate prior to ethanol restored tyrosine phosphorylation and IL-1ß secretion subsequent to ATP stimulation. Furthermore, sodium orthovanadate-induced phosphorylation of ASC Y144, necessary and sufficient for Nlrp3 inflammasome activation, and secretion of phosphorylated ASC were inhibited by ethanol. Finally, multiple alcohol-containing organic compounds exerted inhibitory effects on the Nlrp3 inflammasome, whereas 2-methylbutane (isopentane), the analogous alkane of the potent inhibitor isoamyl alcohol (isopentanol), did not. Our results demonstrate that ethanol antagonizes the NLRP3 inflammasome at an apical event in its activation through the stimulation of protein tyrosine phosphatases, an effect shared by other short-chain alcohols.


Assuntos
Álcoois/toxicidade , Etanol/toxicidade , Inflamassomos/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/efeitos dos fármacos , Proteínas Tirosina Fosfatases/efeitos dos fármacos , Animais , Western Blotting , Células Cultivadas , Ensaio de Imunoadsorção Enzimática , Humanos , Inflamassomos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas Tirosina Fosfatases/metabolismo
10.
Am J Respir Cell Mol Biol ; 55(2): 176-87, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27064658

RESUMO

Obese asthma presents with inherent hyperresponsiveness to methacholine or augmented allergen-driven allergic asthma, with an even greater magnitude of methacholine hyperresponsiveness. These physiologic parameters and accompanying obese asthma symptoms can be reduced by successful weight loss, yet the underlying mechanisms remain incompletely understood. We implemented mouse models of diet-induced obesity, dietary and surgical weight loss, and environmental allergen exposure to examine the mechanisms and mediators of inherent and allergic obese asthma. We report that the methacholine hyperresponsiveness in these models of inherent obese asthma and obese allergic asthma manifests in distinct anatomical compartments but that both are amenable to interventions that induce substantial weight loss. The inherent obese asthma phenotype, with characteristic increases in distal airspace tissue resistance and tissue elastance, is associated with elevated proinflammatory cytokines that are reduced with dietary weight loss. Surprisingly, bariatric surgery-induced weight loss further elevates these cytokines while reducing methacholine responsiveness to levels similar to those in lean mice or in formerly obese mice rendered lean through dietary intervention. In contrast, the obese allergic asthma phenotype, with characteristic increases in central airway resistance, is not associated with increased adaptive immune responses, yet diet-induced weight loss reduces methacholine hyperresponsiveness without altering immunological variables. Diet-induced weight loss is effective in models of both inherent and allergic obese asthma, and our examination of the fecal microbiome revealed that the obesogenic Firmicutes/Bacteroidetes ratio was normalized after diet-induced weight loss. Our results suggest that structural, immunological, and microbiological factors contribute to the manifold presentations of obese asthma.


Assuntos
Asma/complicações , Hiper-Reatividade Brônquica/complicações , Hipersensibilidade/complicações , Obesidade/induzido quimicamente , Obesidade/complicações , Redução de Peso , Animais , Asma/patologia , Bactérias/metabolismo , Cirurgia Bariátrica , Hiper-Reatividade Brônquica/patologia , Citocinas/metabolismo , Dieta , Modelos Animais de Doenças , Hipersensibilidade/patologia , Mediadores da Inflamação/metabolismo , Intestinos/microbiologia , Intestinos/patologia , Masculino , Cloreto de Metacolina , Camundongos Endogâmicos C57BL , Camundongos Obesos
11.
Am J Respir Cell Mol Biol ; 55(3): 377-86, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27035878

RESUMO

Protein S-glutathionylation (PSSG) is an oxidant-induced post-translational modification of protein cysteines that impacts structure and function. The oxidoreductase glutaredoxin-1 (Glrx1) under physiological conditions catalyzes deglutathionylation and restores the protein thiol group. The involvement of Glrx1/PSSG in allergic inflammation induced by asthma-relevant allergens remains unknown. In the present study, we examined the impact of genetic ablation of Glrx1 in the pathogenesis of house dust mite (HDM)-induced allergic airways disease in mice. Wild-type (WT) or Glrx1(-/-) mice were instilled intranasally with HDM on 5 consecutive days for 3 weeks. As expected, overall PSSG was increased in Glrx1(-/-) HDM mice as compared with WT animals. Total cells in bronchoalveolar lavage fluid were similarly increased in HDM-treated WT and Glrx1(-/-) mice. However, in response to HDM, mice lacking Glrx1 demonstrated significantly more neutrophils and macrophages but fewer eosinophils as compared with HDM-exposed WT mice. mRNA expression of the Th2-associated cytokines IL-13 and IL-6, as well as mucin-5AC (Muc5ac), was significantly attenuated in Glrx1(-/-) HDM-treated mice. Conversely, mRNA expression of IFN-γ and IL-17A was increased in Glrx1(-/-) HDM mice compared with WT littermates. Restimulation of single-cell suspensions isolated from lungs or spleens with HDM resulted in enhanced IL-17A and decreased IL-5 production in cells derived from inflamed Glrx1(-/-) mice compared with WT animals. Finally, HDM-induced tissue damping and elastance were significantly attenuated in Glrx1(-/-) mice compared with WT littermates. These results demonstrate that the Glrx1-PSSG axis plays a pivotal role in HDM-induced allergic airways disease in association with enhanced type 2 inflammation and restriction of IFN-γ and IL-17A.


Assuntos
Glutarredoxinas/metabolismo , Hipersensibilidade/patologia , Hipersensibilidade/parasitologia , Pulmão/patologia , Pulmão/parasitologia , Pyroglyphidae/fisiologia , Animais , Citocinas/genética , Citocinas/metabolismo , Glutationa/metabolismo , Hiperplasia , Hipersensibilidade/sangue , Hipersensibilidade/complicações , Imunoglobulina E/sangue , Imunoglobulina G/sangue , Camundongos Endogâmicos BALB C , Muco/metabolismo , Pneumonia/sangue , Pneumonia/complicações , Pneumonia/parasitologia , Pneumonia/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Hipersensibilidade Respiratória/sangue , Hipersensibilidade Respiratória/parasitologia , Hipersensibilidade Respiratória/patologia , Hipersensibilidade Respiratória/fisiopatologia , Mecânica Respiratória , Células Th2/imunologia
12.
Toxicol Lett ; 240(1): 43-9, 2016 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-26481333

RESUMO

Chronic obstructive pulmonary disease (COPD) is the leading cause of cigarette smoke-related death worldwide. Acrolein, a crucial reactive electrophile found in cigarette smoke mimics many of the toxic effects of cigarette smoke-exposure in the lung. In macrophages, cigarette smoke is known to hinder histone deacetylases (HDACs), glucocorticoid-regulated enzymes that play an important role in the pathogenesis of glucocorticoid resistant inflammation, a common feature of COPD. Thus, we hypothesize that acrolein plays a role in COPD-associated glucocorticoid resistance. To examine the role of acrolein on glucocorticoid resistance, U937 monocytes, differentiated with PMA to macrophage-like cells were treated with acrolein for 0.5h followed by stimulation with hydrocortisone for 8h, or treated simultaneously with LPS and hydrocortisone for 8h without acrolein. GSH and nuclear HDAC activity were measured, or gene expression was analyzed by qPCR. Acrolein-mediated TNFα gene expression was not suppressed by hydrocortisone whereas LPS-induced TNFα expression was suppressed. Acrolein also significantly inhibited nuclear HDAC activity in macrophage-like cells. Incubation of recombinant HDAC2 with acrolein led to the formation of an HDAC2-acrolein adduct identified by mass spectrometry. Therefore, these results suggest that acrolein-induced inflammatory gene expression is resistant to suppression by the endogenous glucocorticoid, hydrocortisone.


Assuntos
Acroleína/toxicidade , Resistência a Medicamentos , Expressão Gênica/efeitos dos fármacos , Histona Desacetilase 2/metabolismo , Fumar/efeitos adversos , Linhagem Celular Tumoral , Células Cultivadas , Glucocorticoides/farmacologia , Glutationa/metabolismo , Humanos , Hidrocortisona/farmacologia , Inflamação/induzido quimicamente , Inflamação/patologia , Interleucina-8/genética , Interleucina-8/metabolismo , Lipopolissacarídeos/efeitos adversos , Pulmão/efeitos dos fármacos , Pulmão/patologia , Macrófagos/efeitos dos fármacos , Doença Pulmonar Obstrutiva Crônica/induzido quimicamente , Doença Pulmonar Obstrutiva Crônica/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima
13.
J Immunotoxicol ; 13(2): 191-7, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-25875327

RESUMO

Acrolein (ACR), an α,ß-unsaturated aldehyde and a major component of tobacco smoke, is a highly reactive electrophilic respiratory irritant implicated in asthma pathogenesis and severity. However, few studies have directly investigated the influence of ACR exposure on allergen sensitization and pulmonary inflammation. The present study was designed to examine the impact of ACR inhalation on allergic sensitization to the inhaled antigen ovalbumin (OVA), as well as pulmonary inflammation during subsequent OVA challenge. Adult male C57BL/6 mice were exposed to inhaled OVA (1%, 30 min/day, 4 days/week) and/or ACR (5 ppm, 4 h/day, 4 days/week) over 2 weeks and subsequently challenged with aerosolized OVA (1%, 30 min/day) over three consecutive days. Serum anti-OVA IgG1 levels were increased significantly in animals exposed to both OVA and ACR, compared to animals exposed to either OVA or ACR alone. In addition, differential cell counts and histological analysis revealed an increase in BAL neutrophils in animals exposed to both OVA and ACR. However, exposure to both OVA and ACR did not influence mRNA expression of the cytokines il5, il10, il13 or tnfa, but significantly increased mRNA expression of ccl20. Moreover, ACR exposure enhanced lung mRNA levels of il17f and tgfb1, suggesting development of enhanced inhalation tolerance to OVA. Overall, the findings indicate that ACR inhalation can promote airway-mediated sensitization to otherwise innocuous inhaled antigens, such as OVA, but also enhances immune tolerance, thereby favoring neutrophilic airway inflammation.


Assuntos
Acroleína/toxicidade , Asma , Citocinas/imunologia , Imunoglobulina G/imunologia , Pulmão/imunologia , Neutrófilos/imunologia , Ovalbumina/imunologia , Administração por Inalação , Animais , Asma/induzido quimicamente , Asma/imunologia , Asma/patologia , Inflamação/induzido quimicamente , Inflamação/imunologia , Pulmão/patologia , Masculino , Camundongos , Neutrófilos/patologia
14.
Biochem Biophys Res Commun ; 446(4): 1029-34, 2014 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-24667599

RESUMO

Acrolein is a thiol reactive compound present in cigarette smoke and plays a pivotal role in the deleterious effects of smoking. Acrolein causes toxicity in human bronchial epithelial cells in a dose dependent manner. GSH forms the first line of defense against acrolein-induced toxicity. At high doses of acrolein (⩾10 µM) the capacity of the cellular protection by GSH is overwhelmed and GSH is not able to quench all the acrolein, resulting in cytotoxicity. At a relatively low dose of acrolein (3 µM), no cytotoxicity is observed due to protection by GSH. Moreover we found that exposure to a low dose of acrolein protects cells against the toxic effect of a second higher dose of acrolein. The adaptation to acrolein is induced via Nrf2 mediated gene expression of γ-glutamylcysteine synthetase leading to elevated GSH levels. This upregulation of the protection by GSH demonstrates a hormetic response to acrolein. Hormesis is an adaptive or compensatory response induced by a relatively subtle challenge of homeostasis by a toxic compound. Insight into the mechanism of hormesis is mandatory for a more accurate societal regulation of toxic compounds.


Assuntos
Acroleína/efeitos adversos , Brônquios/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Glutationa/metabolismo , Regulação para Cima/efeitos dos fármacos , Brônquios/citologia , Linhagem Celular , Células Epiteliais/metabolismo , Expressão Gênica/efeitos dos fármacos , Glutamato-Cisteína Ligase/genética , Glutationa/genética , Hormese/efeitos dos fármacos , Humanos , Modelos Moleculares
15.
Artigo em Inglês | MEDLINE | ID: mdl-25628603

RESUMO

Airway epithelial NF-κB activation is observed in asthmatic subjects and is a cause of airway inflammation in mouse models of allergic asthma. Combination therapy with inhaled short-acting ß2-agonists and corticosteroids significantly improves lung function and reduces inflammation in asthmatic subjects. Corticosteroids operate through a number of mechanisms to potently inhibit NF-κB activity. Since ß2-agonists can induce expression of 11ß-HSD1, which converts inactive 11-keto corticosteroids into active 11-hydroxy corticosteroids, thereby potentiating the effects of endogenous glucocorticoids, we examined whether this mechanism is involved in the inhibition of NF-κB activation induced by the ß-agonist albuterol in airway epithelial cells. Treatment of transformed murine Club cells (MTCC) with (R)-albuterol (levalbuterol), but not with (S)- or a mixture of (R + S)- (racemic) albuterol, augmented mRNA expression of 11ß-HSD1. MTCC were stably transfected with luciferase (luc) reporter constructs under transcriptional regulation by NF-κB (NF-κB/luc) or glucocorticoid response element (GRE/luc) consensus motifs. Stimulation of NF-κB/luc MTCC with lipopolysaccharide (LPS) or tumor necrosis factor-α (TNFα) induced luc activity, which was inhibited by pretreatment with (R)-, but not (S)- or racemic albuterol. Furthermore, pretreatment of GRE/luc MTCC with (R)-, but not with (S)- or racemic albuterol, augmented 11-keto corticosteroid (cortisone) induced luc activity, which was diminished by the 11ß-HSD inhibitor glycyrrhetinic acid (18ß-GA), indicating that there was a conversion of inactive 11-keto to active 11-hydroxy corticosteroids. LPS- and TNFα-induced NF-κB/luc activity was diminished in MTCC cells treated with a combination of cortisone and (R)-albuterol, an effect that was inhibited by 18ß-GA. Finally, pretreatment of MTCC cells with the combination of cortisone and (R)-albuterol diminished LPS- and TNFα-induced pro-inflammatory cytokine production to an extent similar to that of dexamethasone. These results demonstrate that levalbuterol augments expression of 11ß-HSD1 in airway epithelial cells, reducing LPS-induced NF-κB transcriptional activity and pro-inflammatory cytokine production through the conversion of inactive 11-keto corticosteroids into the active 11-hydroxy form in this cell type.

16.
Respir Res ; 14: 107, 2013 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-24131734

RESUMO

BACKGROUND: Adverse health effects of tobacco smoke arise partly from its influence on innate and adaptive immune responses, leading to impaired innate immunity and host defense. The impact of smoking on allergic asthma remains unclear, with various reports demonstrating that cigarette smoke enhances asthma development but can also suppress allergic airway inflammation. Based on our previous findings that immunosuppressive effects of smoking may be largely attributed to one of its main reactive electrophiles, acrolein, we explored the impact of acrolein exposure in a mouse model of ovalbumin (OVA)-induced allergic asthma. METHODS: C57BL/6 mice were sensitized to ovalbumin (OVA) by intraperitoneal injection with the adjuvant aluminum hydroxide on days 0 and 7, and challenged with aerosolized OVA on days 14-16. In some cases, mice were also exposed to 5 ppm acrolein vapor for 6 hrs/day on days 14-17. Lung tissues or brochoalveolar lavage fluids (BALF) were collected either 6 hrs after a single initial OVA challenge and/or acrolein exposure on day 14 or 48 hrs after the last OVA challenge, on day 18. Inflammatory cells and Th1/Th2 cytokine levels were measured in BALF, and lung tissue samples were collected for analysis of mucus and Th1/Th2 cytokine expression, determination of protein alkylation, cellular thiol status and transcription factor activity. RESULTS: Exposure to acrolein following OVA challenge of OVA-sensitized mice resulted in markedly attenuated allergic airway inflammation, demonstrated by decreased inflammatory cell infiltrates, mucus hyperplasia and Th2 cytokines. Acrolein exposure rapidly depleted lung tissue glutathione (GSH) levels, and induced activation of the Nrf2 pathway, indicated by accumulation of Nrf2, increased alkylation of Keap1, and induction of Nrf2-target genes such as HO-1. Additionally, analysis of inflammatory signaling pathways showed suppressed activation of NF-κB and marginally reduced activation of JNK in acrolein-exposed lungs, associated with increased carbonylation of RelA and JNK. CONCLUSION: Acrolein inhalation suppresses Th2-driven allergic inflammation in sensitized animals, due to direct protein alkylation resulting in activation of Nrf2 and anti-inflammatory gene expression, and inhibition of NF-κB or JNK signaling. Our findings help explain the paradoxical anti-inflammatory effects of cigarette smoke exposure in allergic airways disease.


Assuntos
Acroleína/uso terapêutico , Asma/induzido quimicamente , Asma/prevenção & controle , Imunoglobulina G/metabolismo , Ovalbumina/efeitos adversos , Acroleína/farmacologia , Animais , Asma/metabolismo , Modelos Animais de Doenças , Glutationa/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Compostos de Sulfidrila/metabolismo , Equilíbrio Th1-Th2/efeitos dos fármacos , Fatores de Transcrição/metabolismo
17.
FEBS Lett ; 587(23): 3808-14, 2013 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-24157358

RESUMO

Acrolein, a reactive aldehyde found in cigarette smoke, is thought to induce its biological effects primarily by irreversible adduction to cellular nucleophiles such as cysteine thiols. Here, we demonstrate that acrolein rapidly inactivates the seleno-enzyme thioredoxin reductase (TrxR) in human bronchiolar epithelial HBE1 cells, which recovered over 4-8h by a mechanism depending on the presence of cellular GSH and thioredoxin 1 (Trx1), and corresponding with reversal of protein-acrolein adduction. Our findings indicate that acrolein-induced protein alkylation is not necessarily a feature of irreversible protein damage, but may reflect a reversible signaling mechanism that is regulated by GSH and Trx1.


Assuntos
Acroleína/farmacologia , Tiorredoxina Dissulfeto Redutase/metabolismo , Tiorredoxinas/metabolismo , Alquilação , Linhagem Celular , Glutationa/metabolismo , Humanos , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/metabolismo , Transdução de Sinais , Tiorredoxina Dissulfeto Redutase/antagonistas & inibidores
18.
Redox Biol ; 1: 265-75, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24024160

RESUMO

Cigarette smoking remains a major health concern worldwide, and many of the adverse effects of cigarette smoke (CS) can be attributed to its abundant electrophilic aldehydes, such as acrolein (2-propenal). Previous studies indicate that acrolein readily reacts with thioredoxin reductase 1 (TrxR1), a critical enzyme involved in regulation of thioredoxin (Trx)-mediated redox signaling, by alkylation at its selenocysteine (Sec) residue. Because alkylation of Sec within TrxR1 has significant implications for its enzymatic function, we explored the potential importance of TrxR1 alkylation in acrolein-induced activation or injury of bronchial epithelial cells. Exposure of human bronchial epithelial HBE1 cells to acrolein (1-30 µM) resulted in dose-dependent loss of TrxR thioredoxin reductase activity, which coincided with its alkylation, as determined by biotin hydrazide labeling, and was independent of initial GSH status. To test the involvement of TrxR1 in acrolein responses in HBE1 cells, we suppressed TrxR1 using siRNA silencing or augmented TrxR1 by cell supplementation with sodium selenite. Acrolein exposure of HBE1 cells induced dose-dependent activation of the MAP kinases, extracellular regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38, and activation of JNK was markedly enhanced after selenite-mediated induction of TrxR1, and was associated with increased alkylation of TrxR1. Conversely, siRNA silencing of TrxR1 significantly suppressed the ability of acrolein to activate JNK, and also appeared to attenuate acrolein-dependent activation of ERK and p38. Alteration of initial TrxR1 levels by siRNA or selenite supplementation also affected initial Trx1 redox status and acrolein-mediated alkylation of Trx1, but did not significantly affect acrolein-mediated activation of HO-1 or cytotoxicity. Collectively, our findings indicate that alkylation of TrxR1 and/or Trx1 may contribute directly to acrolein-mediated activation of MAP kinases such as JNK, and may therefore be important in acrolein-induced alterations in airway epithelial function, as a contributing mechanism in tobacco-related respiratory disease.


Assuntos
Acroleína/toxicidade , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Fumar , Tiorredoxina Redutase 1/metabolismo , Tiorredoxinas/metabolismo , Alquilação/efeitos dos fármacos , Células Cultivadas , Células Epiteliais/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Ácido Selenioso/farmacologia , Tiorredoxina Redutase 1/genética , Tiorredoxinas/genética
19.
Am J Respir Cell Mol Biol ; 46(1): 23-33, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21778411

RESUMO

The respiratory innate immune system is often compromised by tobacco smoke exposure, and previous studies have indicated that acrolein, a reactive electrophile in tobacco smoke, may contribute to the immunosuppressive effects of smoking. Exposure of mice to acrolein at concentrations similar to those in cigarette smoke (5 ppm, 4 h) significantly suppressed alveolar macrophage responses to bacterial LPS, indicated by reduced induction of nitric oxide synthase 2, TNF-α, and IL-12p40. Mechanistic studies with bone marrow-derived macrophages or MH-S macrophages demonstrated that acrolein (1-30 µM) attenuated these LPS-mediated innate responses in association with depletion of cellular glutathione, although glutathione depletion itself was not fully responsible for these immunosuppressive effects. Inhibitory actions of acrolein were most prominent after acute exposure (<2 h), indicating the involvement of direct and reversible interactions of acrolein with critical signaling pathways. Among the key signaling pathways involved in innate macrophage responses, acrolein marginally affected LPS-mediated activation of nuclear factor (NF)-κB, and significantly suppressed phosphorylation of c-Jun N-terminal kinase (JNK) and activation of c-Jun. Using biotin hydrazide labeling, NF-κB RelA and p50, as well as JNK2, a critical mediator of innate macrophage responses, were revealed as direct targets for alkylation by acrolein. Mass spectrometry analysis of acrolein-modified recombinant JNK2 indicated adduction to Cys(41) and Cys(177), putative important sites involved in mitogen-activated protein kinase (MAPK) kinase (MEK) binding and JNK2 phosphorylation. Our findings indicate that direct alkylation of JNK2 by electrophiles, such as acrolein, may be a prominent and hitherto unrecognized mechanism in their immunosuppressive effects, and may be a major factor in smoking-induced effects on the immune system.


Assuntos
Acroleína/toxicidade , Imunidade Inata/efeitos dos fármacos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Macrófagos/efeitos dos fármacos , Fumaça/análise , Alquilação/efeitos dos fármacos , Alquilação/imunologia , Animais , Humanos , Imunidade Inata/imunologia , Imunossupressores/toxicidade , Subunidade p40 da Interleucina-12/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína Quinase 9 Ativada por Mitógeno/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Transdução de Sinais/efeitos dos fármacos , /toxicidade , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...